Appendix: Degenerate bilinear forms
نویسندگان
چکیده
منابع مشابه
Ja n 20 06 Non - degenerate bilinear forms in characteristic 2 , related contact forms , simple
Non-degenerate bilinear forms over fields of characteristic 2, in particular, nonsymmetric ones, are classified with respect to various equivalences, and the Lie algebras preserving them are described. Although it is known that there are two series of distinct finite simple Chevalley groups preserving the non-degenerate symmetric bilinear forms on the space of even dimension, the description of...
متن کاملBilinear Forms
The geometry of Rn is controlled algebraically by the dot product. We will abstract the dot product on Rn to a bilinear form on a vector space and study algebraic and geometric notions related to bilinear forms (especially the concept of orthogonality in all its manifestations: orthogonal vectors, orthogonal subspaces, and orthogonal bases). Section 1 defines a bilinear form on a vector space a...
متن کاملFermionic Novikov Algebras Admitting Invariant Non-degenerate Symmetric Bilinear Forms Are Novikov Algebras
Gelfand and Dikii gave a bosonic formal variational calculus in [5, 6] and Xu gave a fermionic formal variational calculus in [13]. Combining the bosonic theory of Gelfand-Dikii and the fermionic theory, Xu gave in [14] a formal variational calculus of super-variables. Fermionic Novikov algebras are related to the Hamiltonian super-operator in terms of this theory. A fermionic Novikov algebra i...
متن کاملBilinear Forms on Frobenius Algebras
We analyze the homothety types of associative bilinear forms that can occur on a Hopf algebra or on a local Frobenius k-algebra R with residue field k. If R is symmetric, then there exists a unique form on R up to homothety iff R is commutative. If R is Frobenius, then we introduce a norm based on the Nakayama automorphism of R. We show that if two forms on R are homothetic, then the norm of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1974
ISSN: 0021-8693
DOI: 10.1016/0021-8693(74)90005-2